ABSOLUTE TAUBERIAN CONDITIONS FOR ABSOLUTE
HAUSDORFF AND QUASI-HAUSDORFF METHODS

BY
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ABSTRACT

The purpose of this paper is to prove that for a large set of absolute Hausdorff
and quasi-Hausdorff methods the condition

o]
2 Aa, — Ay, | < 0O

k=1

is a Tauberian condition, i.e., its fulfiliment together with the absolute

a0

w0 [24)
summability of X d, to s implies that z Ia,,l < @ and X a, =s.
n=0 n=0 n=0

1. Introduction. A sequence {s,} (s, =ag + -=- + a,) is said to be absolutely
summable by a method T = || 1, |, or | T |-summable if the sequence

g, =

s

Tok Sk
k

is absolutely convergent, that is X%_,|06,4; — 6,| < . A condition on the a,

is called an absolute Tauberian condition for T if its fulfillment by the a,=s,—s5,-
together with the | T |-summability of {s,} implies that {s,} is absolutely convergent
to the same limit.

We shall write a, =Q(c,), ¢, >0, if the sequence {a,/c,} is absolutely con-
vergent; and as a convenient reference we state here Lorentz [7] theorem 1.
The theorem is conveniently stated for a series to sequence method T given by

(1.1) Um= 2 bmkak‘
k=0
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Lorentz’s THEOREM. Let ¢, >0 be a bounded sequence and m = m(n) a
function increasing to infinity with n such that the sequences

(12) Bv(")z Z bmkck - E Crs n =0’172"”s
k=v k=v

(the second sum being zero for n <v) have uniform bounded variations in the
variable n for v=0,1,2, -+, that is,

(1.3) suleﬁ(n+1)—,B(n)|<oo

v20 n=0
Then a, = Q(c,) is an absolute Tauberian condition for T.
In Lorentz’s paper [7], theorem 1 is formulated with the restrictive condition

a,/c,— 0 by mistake, and Lorentz’s intention (private communication) was to

state it without this condition. The proof does not use this condition at all.

Let the sequence {4,} (n = 0) satisfy

O=Adg<A< o<l < v >0, Z 17

The generalized Hausdorff transformation by means of the moments {,} (n=0),
or in short [H; u,], of the sequence {s,} (n = 0) is defined (see [1]) by
(1.4) 6, = X AuSk n=0,1,2,-
k=0

i

where

lIM;

j’nk=(_1)n—kik+1''“. ‘n /wnk(’l)5 0§k<n=1’29'"a

A‘nnzﬂm n=0,1,2,---
and o (X)) =(x—A4) - (x—4,),0=ksSn=0,1,2,-.

It is known ([1]) that [H; u,] is regular if and ouly if the moments possess the
representation

1
(1.5) Uy = [ t* do(t) n=0,1,2-,
40

where a(t) is a function satisfying
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(1.6) a(t) is of bounded variation in [0, 1], 2(0) = «(0 +) =0 and
(1) = 1.

First we characterize the absolutely regular Hausdorff methods, i.e., those trans-
forming every absolutely convergent sequence into an absolutely convergent
sequence converging to the same limit.

THEOREM 1. The method [H: u,} is absolutely regular if and only if it is

Tegular.

For the ordinary Hausdorff methods Theorem 1 is due partially to Knopp and
Lorentz [4] and partially to Ramanujan [9].

An absolutely regular Hausdorff method is thus given by means of a function
oft) satisfying (1.6) and will be denoted by H(x).

We shall restrict ourselves to functions a(t) which satisfy the additional condition

(1.7) fo ll_“(t-’ﬂdt <o

We propose the following result.

THEOREM 2. Let the function a(t) satisfy (1.6) and (1.7). Then A,a, = (1)
is an absolute Tauberian condition for H(2).

For the sequence A,=n, n 20, and for the function a(t)=1— (1 — 1%,
o > 0, the method H(x) reduces to Cesaro method (C, «). Theorem 2 in this
case is due to Hyslop [2].

The generalized quasi-Hausdorff transformation by means of the moments
{p,} (n 2 0), or in short [QH; ], of the series ¥ ® ,a, is defined (see [5] by

(1.8) Oy = X T o= 2 Jyd;
k=0 i=k
It is known (see [5]) that [QH; u, | is regular if and only if the moments possess the
representation (1.5) where o(f) is of bounded variation in [0, 1] and a(1) —o(0) = 1.
We characterize the absolutely regular quasi-Hausdorff methods by

THEOREM 3. The method {QH;p,] is absolutely regular if and only if it is

regular.

Again we see that an absolutely regular quasi-Hausdorfl method is given by
means of some «(f) and so will be denoted by QH(«).
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We propose here the analog of Theorem 2, namely,

THEOREM 4. Let the function o(t) satisfy (1.6) and (1.7). Then A,a, = Q1)
is an absolute Tauberian condition for QH(x).

2. Proofs.

Proor oF THEOREM 1. It follows by (1.4) that

I H
Op = )2 a; 2 Anke
i=0

k=i

Therefore by Knopp and Lorentz [4] Satz 2 necessary and sufficient conditions in
order that [ H; ] should be absolutely regular are

@.1) sup X | X [ — Auoral| =M < o0
iz0 n=i k=i
(where 4,_; ,=0 n=0,1,2,---) and

(2.2) lim ¥ A,=1, lim Ag=0  k=0,1,2,.

n2>w k=0 n—>w

It was shown by Hausdorff [1] (14) that for 0 < k < n

A
(23) )“nk - in-l,k = 1&

Consequently (2.1) becomes

which by [5] theorem 3.1, is equivalent to the sequence {yx,} (n = 0) being re-
presented by (1.5) where a(?) is of bounded variation in [0, 1]. By [1] (7), (25) and
Satz 1 it follows that (2.2) is now equivalent to «(0) = (0 +) =0 and (1) =1
and this completes our proof.

For convenience denote

pult) = (_1)n‘k/1k+1 sl X thlwr’lk(j‘i) 0sk<n=12,--
i=k

DPun(D) = t*n, n=0,1,2,--

where ,;(x) is defined after (1.4).
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Then if {u,} (n = 0) possesses the representation (1.5), then

(2.4)
ProoF OF THEOREM 2. 1t follows by (1.4), (2.4) and [5] p. 46 (11) that

1
Ak = f Pu(Dda(t) 02k£n=0,1,2,--
0

n n 1
2.5) 6, = La % f Pt
i=0 k=i 4]
1

= daq + 2 a; "2 pnk(t)da(t).
k=i

0

Therefore if v/ = max {1,v} and if ¢, =(1/4,), n 2 1, we have

M:

1 n 1
[ patiny - =+

JO i=v

26) fimy = T
i=vy’ ik

i i

n 1 1
- -3 f Pul0)da).
i=vy' 0J0

=

k=

Now by [3] (3.9)

i-1

1
LS puny = f i puydu, 1<
'q'i k=0 t

IA

n,

whence

1 1
[ puwdudats

1 i-1
@) + [ a0 - |

[ 4 ) [ dotta

[ 2 p o

Thus by (2.6) and (2.7)

n 1
28 poy==- 3 [ g

It follows by (2.3) that

ntl

i
B =+ D= T [ Zpp, ) = paedu
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(where we put p, (¢} = 0 and the sum is zero for n + 1 <v')

s Ai ! alu) Aigy [1 a(u)

iE,[}mH fo — pn+1,i(u)du—Z: e Pn+t,i+1 (u)du]
T fi 0] (w)du
- An+1 o u pn+1,v’ .

Now by (1.7) and [6], p. 46 (10)

© 1 w0
Enm-posn] s [ O 5 b, w]a

n=y'—1 ln+1

since by [3] Theorem 4.1, for m = 0

1 O0<us=xl

9 E
= 0 u=0.

n=m

>313>’

Pu@) = |

n

Our theorem now follows by Lorentz’s Theorem.

PrROOF OF THEOREM 3. Again by Knopp and Lorentz [4] Satz 1, it follows
by (1.8) that necessary and sufficient conditions in order that [QH; u,] should be
absolutely regular are

(2.10) sup X |Aul =M<
iz0 k=0
and
(2.11) Tig=1, i=0,1,2,..
k=0

Now by [1] Sdtze S and 6, (2.10) is equivalent to the sequence {u,} (n 2 0) being
represented by (1.5) where a(t) is of bounded variation in [0,1]. Then by [1] (7),
(2.11) is equivalent to a(1) — «(0) = 1 and this completes our proof.

Proor oF THEOREM 4. First we have to show that the transformation is well
defined for series X_,a, such that 1,a, = Q(1). Now if
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Z |2
n=0

nn — ln+1an+1 ‘ < @,

then A,a, = 0(1) and so the existence of the quasi-Hausdorff transform QH(x) of
22 0a, when o) satisfies (1.6) and (1.7) was proved in [3] (see the proof of
theorem 4.2). By (1.8), (2.4) and [5] p. 46 (11) we have

n 1

2.12) =32 a3 | pul)datt
k=0 (4]

i=0

(where p() =0 fori < k)
1

= Xa+ X a X Puyda(t).
i=0 i=n+1 k=0 JO
Therefore if v'=max{n + 1,v} and if ¢, = (1/4,), n = 1, we have

w 1 n 1
B = =+ [ pudo.

1=V

Now by (2.7) for every i =2 n + 1,

r oc(u)pl nt1(Ddu.
0

LY

1 n
@.13) f I puldatt) = dye

Hence for n = v — 1 it follows by (2.9) that

1 @ A
J:) ag:l) [.=z+1 }+1pln+1(u)] du

1
[‘ Mdu,
Jo

u

i

B.m)

]

and consequently
(2.14) Bn)—p(n+1)=0, nzv-1
For n < v — 1 it follows by (2.13) that

1 ©
py -+ = [ 20 3 = )|
By (2.3)

0 Ant
; [ il pl n+1(u) /1 pl n+2(u)]

[pl n+l(u) pi—l,n+1(u)]

i
l| MS
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and since by [1] Satz 1

hm pi,n+1(u) = 0, 0 §. u § 19

i~+co
The second sum is equal to

pv—l,n+ l(u)'

Hence forn < v~ 1

1
2.15) B = pn e ) = [ Hp i

Combining (2.14) and (2.15) we get by (1.7) and [6] p. 46 (10)~(11)

M8

lﬁv(n) - ﬁv(n + 1)‘

i

T = B,n + D)

n=0

A

1 v
f L] 5,
0

u n=0

1
= [ Mdu<oo.
o u

L%

Our theorem now follows by Lorentz’s Theorem.

3. A weaker condition. Let by =0 and for n>1

n r
b, = X dga, where d, = [] (1 + -1—)“
k=1 r=k '{n
Then {b,} is the Hausdorff transform by means of the moments p, = J'oltl" dt,
n = 0 of the sequence 4,a,. (In the special case A, = n we have

b,=(ay +2a, + -+ + nay)/(n + 1)).

Since H(a(t) = 1) is absolutely regular it follows that A,q, = Q(1) implies b, = Q(1).
It was proved by Tietz [10] §3 that if 1,a, = Q(1) is a Tauberian condition for
a method V, then so is b, = Q(1). Thus it follows by our Theorems 1, 2 that

THEOREM 5. Let the function o(t) satisfy (1.6) and 1.7). Then b,= Q1)
is an absolute Tauberian condition for both H(x) and QH(a).

For the Cesaro method (C,a) o > 0, Theorem 5 was proved by Hyslop [2].
(See also Maddox [8].).
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