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ABSTRACT 

The purpose of this paper is to prove that for a large set of absolute Hausdorff 
and quasi-Hausdorff methods the condition 

~ [ )t.a. - 2n_~a._l l < 
k = l  

is a Tauberian condition, i.e., its fulfillment together with the absolute 

summability of 2 an to s implies that ] an I < ~ and a.  ---- s. 
n = 0  n = 0  n = 0  

1. Introduction. A sequence {s.} (s, = a o + ... + a,) is said to be absolutely 

summable  by a method T = I[ ~.~ II, or I T l - s u m m a b l e  if the sequence 

fin ~ ~ Tnk Sk 
k = O  

is absolutely convergent,  that  is X~=ola.+, - a .  I < ~ .  A condit ion on the a ,  

is called an absolute Tauberian condit ion for T if  its fulfillment by the a n = s, - sn- 1 

together  with the I T I-summability o f  {sn} implies that  {sn} is absolutely convergent  

to the same limit. 

We shall write an =f~(c.), Cn > 0, if the sequence {an/c,} is absolutely con- 

vergent;  and as a convenient  reference we state here Lorentz  [7] theorem 1. 

The theorem is conveniently stated for a series to sequence method  T given bY 

(1.1) a,. = ~ brakak. 
k = 0  
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LORENTZ'S THEOREM. Let  c, > 0 be a bounded sequence and  m = re(n) a 

func t ion  increasing to infinity with n such that the sequences 

(1.2) fly(n) = b,,kcg -- ~, Ck, n = 0, 1 ,2 , . . . ,  
k = v  k = v  

(the second sum being zero fo r  n < v) have uni form bounded variat ions in the 

variable  n f o r  v = 0, l, 2 , . . . ,  that  is, 

(1.3) sup ~ Ifl~(n + 1 ) -  fl~(n) I < oo. 
v > O  n = O  

Then  a n = ~(c,)  is an absolute Tauber ian  condit ion fo r  T. 

In Lorentz ' s  paper  [7], theorem 1 is formulated with the restrictive condit ion 

a , / c , ~  0 by mistake, and Lorentz ' s  intention (private communicat ion)  was to 

state it wi thout  this condition. The p roo f  does not  use this condit ion at all. 

Let  the sequence {2~} (n > 0) satisfy 

0 = ;to < X~< ... < 2 , <  ... -- ,oo, T , =  co.  
. = 1  

The generalized Hausdorf f  t ransformat ion by means o f  the moments  {/~.} (n >__ 0), 

or in short  [ H ;  #,] ,  o f  the sequence {s,} (n > 0) is defined (see [1]) by 

(1.4) a~, = ~ 2,kSk n = 0, 1 , 2 , ' "  
k = 0  

where 

n 

2 , k = ( - - l ) n - k 2 k + ~  . . . . .  )~, ~btJOYk(2i), 0 <  k < n = 1 ,2 , . . . ,  
i = k  

2,. =/~. ,  n = 0, 1 ,2 , . . .  

and W.k(X) = (X -- 20 . . . . .  (X -- 2.), 0 < k --< n = 0, 1 ,2 , . . . .  

I t  is known ([1]) that  [H;  #.]  is regular if and only if the moments  possess the 

representat ion 

(1.5) ~, = t~"de(t) n = 0,1, 2, ..., 

where ~(t) is a function satisfying 
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(1.6) a(t) is of bounded variation in [0, 1], a(0) -- a(0 +)  -- 0 and 

~(1) = 1 .  

First we characterize the absolutely regular Hausdorff methods, i.e., those trans- 

forming every absolutely convergent sequence into an absolutely convergent 

sequence converging to the same limit. 

THEOREM 1. The method [H;  tt,,~ is absolutely regular if and only if it is 
regular. 

For the ordinary Hausdorff methods Theorem 1 is due partially to Knopp and 

Lorentz [4] and partially to Ramanujan [9]. 

An absolutely regular Hausdorff method is thus given by means of a function 

~(t) satisfying 0.6)  and will be denoted by H(~). 

We shall restrict ourselves to functions ~(t) which satisfy the additional condition 

(1.7) fo ll°t(t) l < 00 

We propose the following result. 

THEOREM 2. Let the function ct(t) satisfy (1.6) and (1.7). Then 2,a, = ~(1) 

is an absolute Tauberian condition for H(~). 

For the sequence 2 , = n ,  n>_-0, and for the function c ¢ ( t ) = l - ( 1 - t )  ", 

> 0, the method H(c¢) reduces to Ces~ro method (C, c¢). Theorem 2 in this 

case is due to Hyslop [2]. 

The generalized quasi-Hausdorff transformation by means of the moments 

Y~,=o a, is defined (see [5]) by {/~.} (n > 0), or in short [QH; ll,], of the series 00' 

k = 0  i = k  

It is known (see [5])that [QH; /4 ]  is regular if and only if the moments possess the 

representation (1.5) where ct(t) is of bounded variation in [0, 1] and a(1)-~(0)  = 1. 

We characterize the absolutely regular quasi-Hausdorff methods by 

THEOREM 3. The method [QH;/~,] is absolutely regular if and only if it is 
regular. 

Again we see that an absolutely regular quasi-Hausdorff method is given by 

means of some ~(t) and so will be denoted by QH(a). 
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We propose here the analog of Theorem 2, namely, 

THEOREM 4. Let the function c~(t) satisfy (1.6) and (1.7). Then 

is an absolute Tauberian condition for  QH(e). 

2. Proofs. 

PROOF OF THEOREM 1. 

141 

;~.a. = ~ ( 1 )  

(2.3) 2nk - 2n-1 k = 2.'~g 2 -- - -  ' /~n  n i 

Consequently (2.1) becomes 

'~k + 12 
-~n n,k + l • 

sup 7: 1 .,I = v  < 
i>=O n = i  

which by [-5] theorem 3.1, is equivalent to the sequence {/~n} (n > 0) being re- 

presented by (1.5) where ct(t) is of bounded variation in [-0, 1]. By [1] (7), (25) and 

Satz 1 it follows that (2.2) is now equivalent to c~(0) = c~(0 +)  = 0 and ~(1) = 1 

and this completes our proof. 

For convenience denote 

p.k(t)  = (--1)"-k2k+l . . . . .  2. ~ ta'/Og'k(2~) 
i = k  

p . . ( t )  = t ~", n = O, 1 , 2 , . . .  

where co,k(x) is defined after (1.4). 

0 N k < n = l , 2 , . . .  

= M < o o  

k = 0 ,1 ,2 , . . . .  

09 

(2.1) sup 2 i • [)o,k-- 2,-1.k] 
i>o =" [k=i 

(where 2._ 1,. = 0 n = O, 1,2,.. .) and 

I; 

(2.2) lira ~ 2 . k = l ,  lim 2;,k=O 
. - + c o  k = O  n ~ o o  

It was shown by Hausdorff [1] (14) that for 0 < k < n 

It follows by (1.4) that 

a,,= ~. ai ~ 2.k. 
i = O  k = i  

Therefore by Knopp and Lorentz [4] Satz 2 necessary and sufficient conditions in 

order that [H;/ t , ]  should be absolutely regular are 
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Then if {p.} (n > 0) possesses the representation (1.5), then 

fO 
(2.4) 2,k = p,k(t)d~(t) 0 < k < n = 0, 1, 2 , . . . .  

PROOF OF THEOREM 2. It follows by (1.4), (2.4) and [5] p. 46 (11) that 

= p,k(t)dot(t) 
/=0 k = i  

- a o + ~ a ~  ~ f 1 - -  pnk( t)dct( t). 
i=1 k = i  ~0 

Therefore if v' = max {1, v} and if c, = (1/2,), n > 1, we have 

= p.k(t)d~t(t)_ ~ 1 (2.6) p,(n) 

= -- p.k(t) d~t(t). 
i=v'  ~ k=0 

Now by I'3] (3.9) 

1 l - 1  ~1 
Z p.k(t) = u-1 p.i(u)du ' 1 <- i <- n, 

~i k=O 

whence 

- -  ~, p.k(t)da(t) = t~ 1 p,i(u)duda(t) 
(2.7) 2i k=O 

= . I  1 u-lP"i(u) fo"dct(t)du 

Thus by (2.6) and (2.7) 

( 2 . 8 )  p ~ ( n )  = - 

It follows by (2.3) that 

fl,(n) - fl,(n + 1) = 

. f l  ~, or(u) p.i(u)du. 
i=v' Jo u 

+~ fo~ z(u) 
Y" --C- [v.+ z.~(u) - p.~(u)]gu 

I=V ° 
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(where we put p.,,,+l(u) = 0 and the sum is zero for n + 1 <v')  

vZ ____ p.+l,i(u)du- 
i = v '  0 II Io ~ ~(u) ] • u P.+l , i+l  (u)du 

2v, fo 1 ~(u) - 2.+1 T p"+l'v'(u)du" 

Now by (1.7) and [6], p. 46 (t0) 

I + l)l < 
n = O  : • t l  n = v ' - I  /~.+1 

since by [3] Theorem 4.1, for m > 0 

(2.9) ~ 2~ p , , , ( u )=  {1 0 < u < l  

, = m 0 U = O .  

Our theorem now follows by Lorentz's Theorem. 

PROOF OF THEOREM 3. Again by Knopp and Lorentz [4] Satz 1, it follows 

by (1.8) that necessary and sufficient conditions in order that [QH;/~,] should be 

absolutely regular are 

i 

(2.10) sup ~ [2ik[=M< 
i>=0 k=0  

and 

i 

(2.11) ~ 2~k= 1, i=  0 ,1 ,2 , . . . .  
k=0 

Now by [1] Satze 5 and 6, (2.10) is equivalent to the sequence {/~,} (n > 0) being 

represented by (1.5) where ~(t) is of bounded variation in [0, 1]. Then by [1] (7), 

(2.11) is equivalent to ~(1) - a(0) = 1 and this completes our proof. 

PROOF OF THEOREM 4. First we have to show that the transformation is well 
a defined for series ]~.=o , such that 2,a, = f~(1). Now if 
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Z J2.a.- ,~.+la.+l I < ~, 
n=O 

then 2,a,  = 0(1) and so the existence of  the quasi-Hausdorff  t ransform QH(~) of  

~ , ~ o a ,  when ~(t) satisfies (1.6) and (1.7) was proved in [3] (see the p roo f  of  

theorem 4.2). By (1.8), (2.4) and [5] p. 46 (11) we have 

°fo' = pik(t)de(t) 
i=O - 

(where Plk(t) ---- 0 for i < k) 

= 2 a i q- a i Pik(t)do~(t). 
i = 0  i = n + l  k = O  

Therefore  if v ' =  max (n + 1, v} and if c, = (1/k,), n > 1, we have 

fl,(n) = pik(t)d~(t). 
i=v' ~ii k = 0  ./o 

Now by (2.7) for  every i > n + 1, 

(2.13) fo l ~ pik(t)d~(t) = 2"+ ~(0 ~(uU)pi'n+ l(t)du" 

Hence for n > v - 1 it follows by (2.9) that  

fl~(n) = d.  
U L i = n + l  ' 

fo ~ ~(u) du, . U 

and consequently 

(2.14) fly(n) - fl,(n + 1) = 0, 

For  n < v - 1 it follows by (2.13) that 

By (2.3) 

n > v - 1 .  

f l , , (n ) - f l , , (n  + 1) = ~o 1 u Li=,., • 

z I_V_/,,,.+,(~ ) z,+, 1 

= :~ [p,,.+,(u) - p,_,,.+,(u)] 
i=V 
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and since by [1] Satz 1 

The second sum is equal to 

Hence for n < v - 1 

A B S O L U T E  T A U B E R I A N  C O N D I T I O N S  

lira Pi,n+ l(U) -~ O, 0 < U <-- 1, 
i--* oO 

p,-1,.+l(u). 
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fol  (2.15) fl~(n) - fl~(n + 1) = Pv- J,.+ l(u)du. 

Combining (2.14) and (2.15) we get by (1.7) and [6] p. 46 (10)-(11) 

v--2 

] f i t ( n ) - f l ~ ( n + l ) l  = Z l f l v ( n ) - f l ~ ( n + l )  I 
r i c O  n = O  

<= P~- x,,,+ l(u)du 
U n = O  

i 1 [ ~(U) I 
< d u <  oo. 

. U 

Our theorem now follows by Lorentz's Theorem. 

3. A weaker condition. Let b o = 0  and for n > l  

- rata. Then {b.} is the Hausdorff transform by means of the moments . -  jo dt, 

n __> 0 of the sequence 2.a.. (In the special case 2. = n we have 

b. = (a 1 + 2a2 + ... + na.)/(n + 1)). 

Since H(a(t) = t) is absolutely regular it follows that 2.a. = f~(1) implies b. = f~(1). 

It was proved by Tietz [10] §3 that if 2.a. = f~(1) is a Tauberian condition for 

a method V, then so is b. = f~(1). Thus it follows by our Theorems 1, 2 that 

THEOREM 5. Let  the func t ion  a(t) sat is fy  (1.6) and 1.7). Then  b. = g)(1) 

is an absolute Tauber ian  condition f o r  both H(a) and QH(o O. 

For the Ces~ro method (C, ~t) a > 0, Theorem 5 was proved by Hyslop [2]. 

(See also Maddox [8].). 
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